Overall Equipment Effectiveness:
A Powerful Production/Maintenance Tool for Increased Profits
By Bob Hansen of R.C. Hansen Consulting
Table of Contents

Acknowledgements

Preface

1. Understanding the Power of Overall Equipment Effectiveness (OEE)
 1.1 Factories: Effective Producers of Good Goods
 1.2 Factory Dynamics
 1.3 Balancing the Business
 Decide II: A Simulation Experience
 1.4 Leadership for Teams
 1.5 Moving the Community to Improved Performance
 A Case Study Using OEE Metrics
 1.6 Total Effectiveness Equipment Performance (TEEP)
 1.7 The Bottom Line: Good Goods at Lowest Cost—Now!

2. Learning the Basics of OEE Metrics
 2.1 Definitions of OEE Categories
 2.2 Data Collection Review
 2.3 Practice Production Report
 2.4 Summarization Example
 2.5 OEE Formulas and Results
 Method 1 OEE Using Nakajima Formulas
 Method 2 OEE Using Event Time Records
 Method 3 OEE Based On Good Units Transferred.
 2.6 Reconciliation and Loss Analysis

3. The Financial Aspects of OEE
 3.1 Factory Example: Base Case
 3.2 Case B: Same Output, Improved OEE
 3.3 Case C: Full Factory, Improved OEE
 3.4 Case D: OEE Impact on Return On Assets (ROA)
 3.5 Case E: Higher OEE with the Same Sales, ROA
 3.6 Case F: Higher OEE, Selling Everything Produced, ROA

4. The People Factor
 4.1 The Most Important Resource: Actively Learning, Motivated People
 4.2 Group Centering Exercise
 The Metronome Exercise
 4.3 Skills, Interaction, Action
4.4 Observation and Education
4.5 Work Group Experiences
4.6 An Example of Expectations: Master Mechanics
4.7 An Example of Expectations: Technicians
4.8 Interviewing and Hiring
4.9 Ranking and Compensating

5. PRIORITY AND DECISION TOOLS
5.1 The Value Fulcrum
5.2 Developing a Troubleshooting Guideline Decision Tree

6. Win-Win Maintenance/Equipment Shutdown Strategies
6.1 Steps to improve TEEP a Case Study
 Identify
 Exploit
 Subordinate
 Elevate
 Go back
6.2 Shutdown Strategy Checklist

7. Reliability 101
7.1 Reliability101 Introduction
7.2 Reliability Nomenclature
7.3 Beginning Reliability with What You Have
7.4 Matching Maintenance Strategy to Equipment Function
7.5 Developing Best Practices
7.6 Building Reliability into Equipment Design

8. Reliability Availability Maintainability/System Performance Analysis, (RAM/SPA)
8.1 RAM/SPA
8.2 Improving the ‘Horse’ you Already Have / Starting Reliability
8.3 Quick Changeovers: Single-Minute Exchange of Dies
8.4 Theory Of Constraints
8.5 Data collection and Information sharing
8.6 Pareto Analysis
8.7 Project Management and Asset Life Cycle
8.8 Speed ups
8.9 Cycle time improvements
8.10 Benchmarking

9.1 Reliability Quantification Testing
9.2 Implementation Stories
Case 1. Barrel Dumper Project
Case 2. Computer System Upgrade
Case 3. Material Handling Wheels
Case 4. Automatic Core Loading

10. Success or Failure

10.1 The Success Riddle
10.2 Why Factories Fail
 Impending Failure Study

APPENDIX LIST
1. Recommended Reading
2. RAPTOR
3. Redundancy Equations
4. Generic Failure Rates
5. Mechanical Failure Modes
6. Failure Mode Effects and Criticality Analysis
7. Constructing Pareto Charts
8. Preserving Failure Data

INDEX